
VISU 2017 1

Une approche out-of-core entièrement basé
GPU pour la manipulation de gros volumes de

données
A fully GPU-based out-of-core approach to handle large volume data

Jonathan Sarton, Nicolas Courilleau, Florent Duguet, Yannick Remion & Laurent Lucas

English Abstract—3D datasets production capabilities in bioimaging has widely evolved in recent years notabily with a rapid
increase in the raw size of these ones. As a result, many large-scale applications including visualization problems has become
challenging to address, particularly when the available main or GPU memory - even more limited - hardly ever exceeds the data
size for a processing requiring the entire volume to be present in memory for instance. The solution to this issue lies in providing
out-of-core algorithms specifically designed to handle datasets larger than memory. We propose in this article a new approach
based on joint works of Hadwiger et al. [10] and Crassin [5]. This pipeline was designed to manage data as regular grids
regardless of the underlying application. It relies on a caching approach with a virtual memory addressing system fully managed
by the GPU. It allows any visualization or processing application to leverage of the flexibility of its structure by managing
multi-modalities datasets in any way. We also discuss about implementation details in particular the hierarchical cache levels
approach. Furthermore, we present some results on a single node PC cluster before to provide a detailed performance analysis
of our solution. All examples are rendered at interactive rate while respecting the limited GPU memory budget.

Index Terms—GPU, Caching system, Out-of-core, Large data

F

1 INTRODUCTION

The need of visualizing and/or processing large vol-
ume data has become common today in different
fields such as biomedical or even entertainment. Nav-
igating inside such volumes in real-time involves
designing efficient out-of-core data management al-
gorithms to address entire massive datasets from
high-performance computing devices such as current
GPUs.

In this paper, we introduce a complete out-of-core
pipeline from disk to GPU to access very large vol-
umes exceeding GPU or CPU memory in real-time.
We base our work on modern methods already known
in this field, such as the design of output-sensitive
algorithm, the on demand-paging and data streaming,
the bricking and multi-resolution representation, the
use of a brick pool as a cache on the GPU, the virtual
addresses translation and more. However, we propose
a system that allows access to multi-modal volumes
from any type of end-user application with a GPU

• J. Sarton: Université de Reims Champagne-Ardenne, CReSTIC, France
E-mail: jonathan.sarton@univ-reims.fr.

• N. Courilleau: URCA, CReSTIC, France & Neoxia, France
E-mail: nicolas.courilleau@neoxia.fr.

• F. Duguet: URCA, CReSTIC, France & Altimesh, France
E-mail: florent.duguet@altimesh.com.

• Y. Remion: URCA, CReSTIC, France
E-mail: yannick.remion@univ-reims.fr.

• L. Lucas: URCA, CReSTIC, France
E-mail: laurent.lucas@univ-reims.fr.

interface connected to our out-of-core pipeline.
This work aims to propose a solution which takes

the maximum advantage of the multi-threaded envi-
ronment of the GPUs in order to carry out as much as
possible operations in parallel, while leaving enough
free GPU occupancy time for an end-user application
that could be very consuming in computing resource
(such as volume ray-casting or convolutional process-
ing on the volume for instance).

This paper is structured as follow. In section
2, a brief state of the art of recent advances in
external memory management is given. In the next
sections (from 3 to 5), our contribution is presented
and discussed in terms of data representation
first, out-of-core management next and ultimately
implementation. Some preliminary results are then
presented in section 6. Finally, our future plans are
exposed in section 7 before we conclude.

Context of research
This work is part of the 3DNeuroSecure project ("In-
tensive Computing and Numerical Simulation" call of
PIA2 for the Development of the Digital Economy).
The aim of this project is to propose a collaborative
solution to process and interactively visualize massive
multi-scale data from ultra-high resolution 3D imag-
ing (e.g. light sheet microscopes and histological slide
scanners). This secure solution also aims at breaking
therapeutic innovation by allowing the exploitation of
3D images and complex data of large dimensions as



VISU 2017 2

part of applications framework linked to the neurode-
generative diseases like Alzheimer.

2 RELATED WORKS

External memory data management [12], [13] also
called out-of-core data management, defines the set of
techniques used to handle data that are too large to fit
entirely into the main memory of the unit in charge
of processing these data. The development of these
methods for real-time visualization of regular voxel
grids has been motivated by volume ray-casting on
GPU [11] of large datasets and has been widely used
during the last decade.

Gobbetti et al. [9] in 2008, are the first to offer a com-
plete, out-of-core, multi-resolution volume renderer.
Then, in 2009, Crassin et al. [6] propose a more efficient
system with Gigavoxel, a ray-guided streaming of
opaque voxelized surfaces for entertainment purpose.
In [7], Engel presents a framework for scientific visu-
alization of tera-voxels, improving previous works by
optimizing the GPU to CPU communications.

In all previously mentioned works, a tree structure
is used to address out-of-core bricked data (an octree
or a generalized N3-tree in Gigavoxel) with a kd-
restart algorithm to go through the tree on the GPU.
The basic principle is the use of a brick pool in GPU
texture memory as a cache to store small bricks of
voxels with, in the case of [6], [7], a node pool to store
the tree nodes. These pools are updated at each frame
to insert requested data by replacing unused ones if
needed, all managed with a simple Least Recently
Used (LRU) mechanism. While Gobbetti et al. used
visibility information for culling, the others introduce
a full ray-driven streaming that only loads visible
data. Brix et al. [4] rely on concepts described in [6]
and adapt it to their specific needs of multi-channel
microscopy on standard computers.

Whereas we can find many approaches based on the
use of an octree, Hadwiger et al. [10] present a new
virtual memory approach to address several petabytes
of biomedical data. They focused on Electron Mi-
croscopy volumes with continuous stream of data.
They compare their approach with octree traversal
and note that it scales better to extremely large volume
sizes.

For a detailed analysis, one can refer to Fogal
et al. [8]. They present a study about the bricking
and the optimal brick size, the I/O disk access with
or without compression and other characteristics
analysis. In addition a more complete state of the
art can be found in [3], we can find the above
mentioned works with a complete description on
different methods of data representation and storage
or comparison of address translation approaches.

Although these different solutions address most of
the out-of-core data management issues, they do not

mention all the needs in a versatile way regardless
of the end-user application.

Contribution
Our contribution based on Hadwiger et al. [10] and
Cyril Crassin’s Phd Thesis [5] proposes an hybridiza-
tion of these two works in order to introduce a generic
caching system embedded and managed on the GPU.
To achieve this, we first borrow the virtual memory
approach of [10] to translate virtual to physical brick
addresses with a multi-level, multi-resolution page ta-
ble (PT) hierarchy. Such a choice is motivated by both,
the construction and the management constraints of
an octree and the better scalability for very large
volumes. In contrast to Hadwiger et al. who manage
the content of GPU caches from the CPU, with per-
frame read-back for bricks usage and requests, we
next use the cache mechanism entirely managed on
the GPU proposed by [5].

3 SYSTEM OVERVIEW

The system we propose is illustrated in figure 1. It is
composed of a:

• multi-resolution 3D mipmap pyramid subdi-
vided into small bricks for each level and stored
in a mass storage, obtained in a pre-precessing
step;

• large CPU RAM brick cache;
• multi-resolution multi-level PT hierarchy and a

data cache on GPU;
• cache manager entirely on GPU to manage the

maintenance of caches and offer an efficient man-
agement of cache miss.

We propose to implement a multi-level multi-
resolution page table hierarchy, introduced by Had-
wiger et al. [10], to address a whole volume using
virtual memory scheme. This hierarchy is composed
of several levels of virtualization, with a PT for each
level, in order to address very large volumes. The
levels of page table as well as the bricks of voxels
are cached in the GPU and managed individually
by LRUs. While Hadwiger et al. manage the entire
content of the GPU caches from the CPU, we propose
a full management on the GPU in order to take
advantage of the multi-threaded architecture and to
limit CPU reads back.

This management can be summarized in two main
tasks:

1) The updates of the cached bricks usage informa-
tion and the LRU caches updates.

2) The raise of cache misses.
On their side, Hadwiger et al. use a use bit for each

brick present in the cache to report bricks usages.
In addition, to report cache misses, they use one
hash table on the GPU for each N ×N pixels subset
of the display. For N = 64 with a full HD display
for instance, they use 510 hash tables with atomic



VISU 2017 3

Fig. 1. Complete out-of-core pipeline. An end-user application is connected to the GPU interface of our
pipeline. This application can require voxels on the GPU. The navigation through the volume is virtualized and
the voxels are stored in small bricks and cached on the GPU. The cache is entirely managed on the GPU to
handle bricks usage and requests. A small request list for non present bricks is sent to the CPU processed by
an asynchronous thread that will require for these bricks to a CPU cache manager. If a brick is not present in
the CPU cache, we read it from a mass storage where a bricked multi-resolution representation of the volume is
stored. The brick is sent back to the GPU and the page table hierarchy is updated.

adds to report brick requests. Those hash tables are
then sent to the CPU to handle the requests. As we
have already mentioned, we draw our inspiration
from [5] for a full management of the caches on
the GPU. For (1) we proceed in the exact same
way, so we will briefly explain the procedure as a
reminder in the section 5.2). However, one notable
difference compared to Crassin is that he uses a tree
structure with nodes as page tables to address the
data bricks. In his system, the page table entries
(nodes of the octree) are requested by the GPU and
involve communications between the central memory
and the video memory. Thus, for (2) we propose a
system slightly different.

The main feature of our pipeline is to propose a
GPU interface for any type of application that ma-
nipulates very large volumes represented as a regular
grid of voxels. The navigation inside the volume is
performed in a virtual normalized volume. At any
time of the run-time applicafion a voxel can reside in
several memory places (mass storage, CPU or GPU).
The voxel addressing is done in the application as one
uniform address space regardless of the physical place
of the voxel. The access to a voxel is determined by a
pair (l, p) with l, the desired level of details (LOD) and
p, the 3D normalized floating position in the virtual
volume (p ∈ [0, 1]3). When the application requires
a voxel (Fig.1-1), the entire pipeline is triggered as
follow: i) The first step is to check in the page table
hierarchy if the brick containing the required voxel is

present or not in the GPU data cache (see Sec.5.1 &
Fig.1-2). ii) In the case where this brick is present in the
data cache, the cache manager can directly provide the
required voxel to the application. Then it will report
the usage of that brick (see Sec.5.2). iii) In the other
case – when a cache miss occurs – a brick request is
reported by the cache manager (see Sec.5.2).

The end-user application needs to launch explicitely
the update of our cache manager. For instance, with
a ray-caster it is generally performed after each frame
creation. This action will lead, on one hand, to the
update of the LRUs from the previous use of bricks
(Fig.1-3) and, on the other hand, will create a complete
request list with all the reported cache misses (Fig.1-
2.1). Then a small request list is sent to the CPU (Fig.1-
2.2) where an asynchronous thread will request the
bricks to the CPU cache manager (Fig.1-2.3). If needed
the brick is read from the mass storage and written
into the CPU cache (Fig.1-2.4). Then, the asynchronous
thread will write the requested bricks in a buffer
accessible by the GPU (Fig.1-2.5). When the brick can
be written in the data cache, we will update the page
table hierarchy accordingly (see Sec.5.4 & Fig.1-2.6).

Compared to [10], our pipeline is simpler because
we do not have the constraint of a constant stream of
data coming from a microscope. Therefore, we have
an a priori knowledge of the data set and we store
directly small bricks (e.g. 163−1283 voxels) rather than
storing 2D tiles that requires registrations and a step
of 3D construction of bricks at run-time.

In our system, the only communications from host



VISU 2017 4

to device are operated to transfer the bricks containing
the voxels. The communications in the other direction
(device to host) are limited to the small request lists
containing the pair (l, p) of each requested bricks.
All other mandatory actions of the out-of-core data
management are performed inside the GPU, taking
advantage of its computing power and limiting costly
communications with the host.

4 DATA REPRESENTATION

The input data could come from physical model
acquisition (e.g. biomedical scans, MRI, etc.) or from
the voxelization of any kind of data as long as they
may be represented as a scalar 3D grid (see Sec. 6.3).
In order to use these volumes in our system they
need to be preprocessed. In a first step, we create
a pyramid of resolution from the given volumes, it
basically consists of creating a 3D mipmap pyramid
of the volumes. In addition, applying different down-
sampling ratios along each axis gives the opportunity
to correct the raw data anisotropy.

Once a level is mipmapped, a second step, called
"bricking", is performed. It is an object space decom-
position method and consists in taking each volume
of the pyramid and divide it into small independent
blocks, previously called "bricks". Using independent
bricks gives the ability to get access to data in a
constant time. The brick shape does not necessarily
have to be cubic, different edge sizes can be used. In
any case, when the volume is not sufficient to com-
plete all bricks, the last bricks are simply completed
with empty voxels. Our approach avoids to generate
unnecessary empty bricks like most approaches that
manipulate only power of two volume sizes.

In contrast to Hadwiger et al. [10], the data acqui-
sition is not in real-time and has been already per-
formed. It means that treatments could be performed
on the data before using them in the system. As we
are talking about large volumes of data, both steps
mipmapping and bricking take a substantial time to
be done therefore it is interesting to perform these
steps outside the stream.

Finally, the bricks are stored on a large storage
device in raw data or in compressed format. Using a
compressed bricks format gives two advantages; the
volumes will take less memory space on the storage
and the most important one, because the bricks will
be lighter it will take less time to load the bricks from
the storage to the CPU (see Sec. 6.2). Nevertheless, we
are targeting a real-time application using medical im-
ages, it means the compression algorithm needs to be
lossless and has to provide fast time decompression.
To perform this we opted for an LZ41 compression
scheme.

1. http://lz4.github.io/lz4/

Multi-resolution Page table (MRPD)

Page table cache 1 (PT1)

Page table cache n

Data cache

O
ptionn al

Fig. 2. Multi-resolution, multi-level page table hierarchy
virtualization.

5 OUT-OF-CORE DATA MANAGEMENT

5.1 Virtualization

In order to address all the bricks of a large volume
from the GPU, we use the approach of the multi-level
multi-resolution page table hierarchy. This can be seen
as a pyramid where each level virtualize a set of
entries in the level below it (see Fig.2). The top of the
hierarchy is composed of the multi-resolution page
directory (MRPD) which corresponds to the starting
point of the virtual addressing of any voxels, for all
level of resolution. This is the only level which is not
virtualized and entirely present on the GPU with a
low memory impact (see Sec. 6.2). Below the latter,
there may be N intermediate levels of PT with a cache
for each of them. Finally, the data cache containing
the bricks is located at the bottom of the hierarchy.
As Hadwiger et al. show, only N = 2 intermediate PT
levels allow to address volumes of several petabytes.
This approach of virtualization offer a complexity of
O(n), with n the number of level, to address any
voxels, regardless of the desired LOD.

Our implementation of this hierarchy has been
planned in a generic way in order to be able to
dynamically create as much intermediate PT level
table as necessary to address any volume size.

5.2 Implementation

The MRPD, the PT caches and the data cache are all
implemented with the CUDA surface API [1] in order
to read and write elements into 3D texture memory. In
the case of a graphic end-user application, the spatial
coherent access patterns of the texture memory is a
significant benefit. All the caches are managed by an
LRU implemented as a simple device vector with the
Thrust parallel template library [1].

The data cache is templated in order to store any
type of voxels from GRAY8 to RGBA32 and more
(see Sec. 6.3). Conversely, an entry of PT is always
represented with four 32-bits integers to store the

http://lz4.github.io/lz4/


VISU 2017 5

(a)

(b)

Fig. 3. Parallel cache manager mechanisms on the
GPU (a) Cache usage update: a single pass to update
LRU with double stream compaction (Cartesian prod-
ucts) from a shared buffer to report bricks usage. (b)
Bricks request list creation: a single stream compaction
from a shared request buffer to create a small request
list.

3D position of the first element virtualized by this
entry in the next level of the hierarchy and a flag
representing the state of the virtualized element. This
flag can be either empty, mapped or unmapped (not
present on the GPU).

LRU update. We use the data parallel primitive
stream compaction provided with Thrust to update
each LRU. This ensures to sort the LRUs by moving
the most recently used elements to the beginning of
the list while keeping the order of the other ones
(Fig. 3-a). To manage the caches, we maintain, on the
global GPU memory, usage buffers where each buffer
contains as many entries as elements present in its
respective cache. A global 32-bits integer timestamp
is created inside the cache manager and incremented
after each update. This timestamp is used to tag, in the
usage buffers, all the entries of the hierarchy accessed
when voxels are requested by CUDA kernels. It is not
necessary to use atomic writes to handle concurrent
threads access because each thread will write the

same timestamp integer in the corresponding entry.
Then, a mask is created and filled with a boolean flag
that indicates if the corresponding usage buffer entry
contain the current timestamp or an old one. Finally,
this mask plus the old LRU are given as input to the
stream compaction operation (Fig. 3-a) to obtain the
updated LRUs.

Cache misses. Figure 3-b shows the creation of a
request list. When a requested brick is not present in
the GPU brick cache, a cache miss occurs. This induces
a request for this brick. In the same way as the usage
buffer, a request buffer is maintained in the global
GPU memory. This buffer contains as many entries as
bricks in the whole volume and the values are set to
the current timestamp to the missing bricks. Then, by
using stream compaction on this request buffer, we
obtain a complete request list. This list is then limited
to a small size in order to limit the number of brick
loading requests at each update.

With an octree approach, the PT entries of the
virtual memory management are the octree nodes
themselves (stored in a node pool). This implies to
transfer these nodes form the CPU to the GPU mem-
ory by raising PT entries requests (node requests).
The PT entries are managed in the same way as the
bricks in the brick pool. In our method, the PT entries
are updated directly in the GPU avoiding tranfers
between the CPU and the GPU. The singles commu-
nications between the central memory and the GPU
texture memory are data (bricks) transfers. However,
our request buffer has to be sized to the number of
total bricks. For instance, a large volume of 163843

voxels and 643 voxels bricks implies a request buffer
of ~77MB. With a data cache of ~4GB (which is
correct for modern GPUs), it represents less than 2%,
which is negligible.

5.3 Data fetch

Once a brick request is received by the CPU, its
cache handles it. From this point, two scenarios are
possible. In the worst case, the bricks are loaded from
the storage device, then decompressed and finally
added to the CPU cache. Conversely, in the best case
the requested bricks are already presents in the CPU
cache and can be directly used. Depending on the
size of the bricks and the number of bricks to load
this steps could take a significant amount of time. To
overcome this problem, the load request is forwarded
to another CPU thread and frees computing time to
process other treatments.

As shown by Crassin, it is more interesting to
use Cuda zero copy [1] to load the bricks from the
GPU. It ensures optimum uses of the hardware rather
than transfering them manually using copy opera-
tions triggered from the CPU. To achieve this, we use
a requested buffer allocated by CUDA in CPU memory.
The dedicated asynchronous CPU thread takes care of



VISU 2017 6

1 2 3 4 50

6 7 8 9 10 11

171615141312

18 19 20 21 22 23

0

0,2 0,0 0,0

1,21,0

1,2

0,0 2,2 2,2

4,0

4,2

0,2

4,2

2,0

20 0

6 1 4 1

18 7 4 4 10 1

168

102

1

Multi-resolution Page Directory

Page Table Cache 1

Page Table Cache 2
LRU

x,y,0

x,y,0

x,y,0 0,2,1

1,0,1 x,y,0

x,y,0

x,y,0 x,y,0

1,2,1 0,0,1

x,y,0 x,y,0

0

0
0,0,1

x,y,0
1

x,y,0

4,0,1 x,y,0

x,y,0

2,2,1 0,2,1

0,0,1 2,0,1

4,2,1

4 6

1 1

x,y,0
2

2,2,1

4,2,1

10
x,y,0

7 4 4

11018
(16)(8)

LRU

LRU
Data Cache

0,0,10,2,1 2,2,10,2,1
Virtual On GPU

43

6 7 8

5

21

x,y,0 0,2,0

1,2,1

2

2 3 4 50

6 7 8 9 10 11

1 20 10

1 2 30

4 5 6 7

L0 L1

(a)
(b.1)

(c.1)

(d.1)

(b.2)

(c.2)

(d.2)

4,2,0

2,2,0

1,2,0

(I)

(III)

(III)

(II)

(I)

1

Fig. 4. Hierarchy updates.: This 2D example shows the virtualization of a volume sized of 12 × 8 voxels (d.1)
with bricks sized of 2 × 2 using an MRPD and 2 levels of PT caches. One entry of the MRPD addresses 2 × 2
PT1 cache entries. One entry of PT1 cache addresses 1 × 2 PT2 cache entries. One entry of the PT2 cache
addresses a brick of 2 × 2 voxels. The MRPD and the 3 caches are stored on the GPU with one LRU for each
cache. To get access to the voxel [2, 2] of L0 we follow the yellow path as explain by [10]. The entries stored in
the MRPD and the PT caches are [X, Y, F] with [X, Y] the coordinate of the beginning of the entry in the next
cache and F the flag of this entry (see Sec. 5.2) The accesses to the blue and purple pixels raise a request and
a hierarchy update (see Sec. 5.4).

writing the bricks to load in it and then indicates to
the GPU when the bricks are available in this buffer.
Finally the write of all the requested bricks from the
requested buffer to the data cache is performed with
a single pass in a CUDA kernel with one thread per
voxel per brick.

5.4 Hierarchy updates
The update of the hierarchy follows 3 sequential steps:
i) removing the references of the bricks that will be
removed from the data cache (if the cache is already
full), ii) writing the new bricks in the data cache and
updating its LRU and then iii) referencing these new
bricks in the hierarchy.

Based on the example given in the figure 4, the
purple and blue pixels (Fig. 4-d.1) raise a brick request
respectively for the bricks number 8 and 16 of the
level L0, written L0.8 and L0.16. Given these 2 bricks
to add, we take the last 2 bricks in the LRU of the
data cache (L1.1 and L0.10) and remove the link to
these bricks from the PT2 cache by switching their
respecting linking flags to 0 (Fig. 4-c.2.I). Once this
step is done, the bricks are isolated and are not
reachable anymore from the MRPD. They are then
replaced by the new bricks, the brick L1.1 is replaced
by the brick L0.16 and the L0.10 by the L0.8 (Fig. 4-
d.2).

Finally, the new bricks need to be referenced in the
hierarchy. This steps is performed in 3 sub-steps. We
first need to know to which point the new bricks are
referenced. From the MRPD an entry to the brick L0.16
exists in the PT1 cache (Fig. 4-b.2). In the PT1 cache the
flag for the entry to the brick is set to 0, it means for all
caches from this cache to the data cache, no PT entries
exist to reference this brick. In a second step, for these
caches we take the last PT entry in the LRUs (that
has not been added during the current update) and
remove its reference in its parent. In our case the last
entry in PT2 cache is the entry L1.1 and its reference is
removed from the PT1 cache (Fig. 4-b.2.II) by setting
its flag to 0. This is done in order to dereference the
last entry of the cache and being able to replace it with
the new entry. Finally for the same caches we add new
PT entries to reference the new brick (Fig. 4-c.2.III) and
reference it in its parent (Fig. 4-b.2.III). When done,
these 3 final steps are performed once again for the
brick L0.8. In general case, these steps are performed
sequentially one brick after another (see Sec. 6.3).

6 RESULTS

6.1 Use case

In order to test our system, we developed a simple 2D
slices visualizer. This application allows to navigate



VISU 2017 7

(a) (b) (c)

Fig. 5. Datasets used for system validation and performance analysis. (a) render with our simple 2D slices
visualizer (see Sec. 6.1), (b) & (c) render with our own OptiX-based DVR solution.

(pan and zoom) in a stack of images with 2D multi-
resolution rendering. Thus, it allows to graphically
validate the coherence, the reactivity of the navigation
and the performance of the entire out-of-core data
management. We opt for a strategy that promotes the
quality of the visual feedback of the user. In this sense,
when a query is lifted for a brick of resolution level l,
the cache manager provides to our renderer a lower
resolution brick (if there is one in the cache) the time
that the brick of level l arrived in the data cache.

To illustrate the results, we used three datasets (see
Fig. 5):

• (a) A stack of 8 histological slides with a resolu-
tion of 61856× 46383 RGBA pixels (88GB).

• (b) A 3D fractal of 25603 RGB voxels (50GB)
generated with Mandelbulb3D.

• (c) A 2160 × 2560 × 1072 volume with grayscale
16bits voxels (11GB) from a light sheet micro-
scope.

All the tests were carried out on an NVIDIA Grid
K2 with 4GB of VRAM, a CPU Intel Xeon 2.60GHz
with 8 cores and 32GB of RAM, and an SSD. We used
CUDA 8.0 and openGl 4.5 interoperability to render
on a 1920× 1080 viewport.

Due to general lack of very high-resolution voxel
datasets, we will not test here a hierarchy with mul-
tiple levels of page table caches.

6.2 Performance & Memory Analysis

We present here the average times of the various
stages of maintenance of the caches and of the hi-
erarchy as well as the loading of the bricks on the
GPU. These times are calculated on the three datasets
by performing the following navigation scenario: a
zoom to the most detailed level of resolution, then
a navigation in the slices of the image stack and then
a 2D displacement in a slice.

We can see that the average loading time of a brick
in GPU cache is about 200µs. The additional cost of
the cache manager is about 1500µs. The latter consists
of the management of the LRUs and the management
of the brick requests for 1300µs which is carried out
at each update (after each creation of a frame for
the application proposed here) and the update of the
virtualization hierarchy for 200µs, which is performed
only when a set of bricks are added to the cache.

Moreover, we can note that the rendering is carried
out with a rate of about 200 frame per second by our
application. This rate is high because the calculation
performed for the rendering of a frame is low in the
case of the proposed application, and constant since
the loading of bricks is performed asynchronously.

Despite the fact that the entire management of
the caches and the hierarchy of virtualization are
realized on the GPU, its occupancy is between 4%
and 6%. This allows to leave a lot of occupancy for
an application that requires heavy processing.

The memory occupation of the MRPD is 1.4GB for
(a), 772 kB for (b) and 2MB for (c).

6.3 Discussion
Weaknesses.
Visualization. Using this system for the visualization
implies some limitations regarding the race condi-
tions. The thread that is loading and preparing the
bricks cannot load them in the cache and update the
hierarchy without inducing possible collision with the
GPU.

Hierarchy updates. There are 2 main limitations
during the update of the hierarchy. The first one
occurs when a PT entry is remove from the cache. In
figure 4.c.2 when the entry L0.10 overwrite the entry
L1.1 we lose the link to the brick that this entry was



VISU 2017 8

referencing. Losing the link to the brick L1.1 in 4.d.2
is not a problem because it will be overwritten but
we will automatically lose the link to the bricks L1.4.
This scenario means we could have bricks present
in the data cache but they will not be referenced
anymore. If the next update requires and loads the
brick L1.4, it will be present twice in the data cache.
This problem may occur at any level of the hierarchy
and higher it happens more potential references are
lost. The second limitation is directly related to the
way the referencing of the new bricks is performed
in the update itself. Despite this step is computed
on the GPU, it cannot use its power of parallelism.
Assume that in figure 4 the bricks L0.16 and L0.22
were requested, if the referencing was performed in
parallel two table entries L0.10 could be added in PT2
cache. To avoid this scenario, each brick needs to be
referenced one by one. For this example, the entry
L0.10 would have been added only once and when
the brick L0.22 will be referenced, it will modify the
just added entry. It implies that more bricks will be
loaded for during one update more time this step will
take. Therefore, some improvement may be required
(See Sec. 7).

Strengths.
With this data structure, the system get access to the
data in a constant time which is in O(n) where n is
a the number of PT cache plus the MRPD when the
data are in the GPU 5.1.

Image processing. In contrast to the image visu-
alization, the bricks fetch time for image processing
could be optimized. Once a brick is consumed by
the processing it is not required to keep it. Thus,
the system can work on a just-in-time basis, while it
consumes bricks it load an others.

Data Type. With this out-of-data management, it is
possible to virtualize any kind of data as long as the
data used can be represented as a regular 3D grid of
scalar values. It uses the CUDA texture memory that
can store up to 4 channels with a maximum of 32 bits
each. However it is possible to use the global memory
instead of the texture, it allows the storage of any
kind of data (double type or more than 4 channels). In
addition it is possible to virtualize really large volume
of data [10].

Scalability. This system is be easily scaled in a
high performance computing environment. The cache
managers deployed on each node are independent
and can work on their own process on their side.

7 CONCLUSION & PERSPECTIVES

We proposed an out-of-core caching system fully man-
aged on GPUs to address very large volume of data.
Our pipeline can be used by any type of application
that requires manipulating volumes represented as a
regular grid of voxels, with the ability to manipulate

multi-modal data. A simple 2D slice visualizer tools
allow us to validate the functioning of our system
by allowing an interactive navigation in volumes
exceeding the amount of GPU and CPU memory with
a very high rendering rate.

Hierarchy updates. Actually, the PT hierarchy up-
dates are performed on the GPU but in a sequential
context (a one thread kernel). It avoids to load twice
the same bricks or to add multiple time the same
PT entry but it does not take the advantages of the
parallelism of the GPUs. It could be interesting to
consider a multi-threaded parallel strategy in order
to improve the time spent on this step.

Transfer times. The main bottleneck in the system
is the bricks loading time from the storage device to
the GPU. Data compression addresses a part of this
problem, but it could be more interesting to be able to
decompress the bricks directly on the GPU. This could
take advantages of the multi-threaded environment
to implement an efficient decompression algorithm
and reduce the amount of transferred data to the
GPU. Another solution would be to bring this system
to a high performance computing environment. By
properly sharing the work, the different nodes of such
an environment could then distribute the transfers
and thus reduce this bottleneck.

Cache misses. We could consider a strategy to
improve the cache miss management system, for ex-
ample by prioritizing requests. With a simple counter,
we can determine which bricks have been the most
requested. Thus, these bricks have a higher priority
for the loading step.

ACKNOWLEDGMENTS

This work is supported by the French national funds
(PIA2’program) under contract No. P112331-3422142
(3DNS project). We would like to thank the three
clusters (Cap Digital, Systematic and Medicen) that
support this project.

We would like to thank Thierry Delzescaux and the
Mircen team (CEA, France) for the datasets (a) & (c)
Fig.5



VISU 2017 9

REFERENCES
[1] Nvidia cuda programming guide 8.0. https://docs.nvidia.

com/cuda/index.html. [Online; accessed 2017-April-27].
[2] J. Beyer, M. Hadwiger, A. Al-Awami, W. K. Jeong, N. Kasthuri,

J. W. Lichtman, and H. Pfister. Exploring the Connectome:
Petascale Volume Visualization of Microscopy Data Streams.
IEEE Computer Graphics and Applications, 33(4):50–61, July 2013.

[3] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-Art in GPU-
Based Large-Scale Volume Visualization. Computer Graphics
Forum, 34(8):13–37, 2015. 1 - état de l’art : rendu volumique.

[4] T. Brix, J.-S. Praßni, and K. H. Hinrichs. Visualization of
large volumetric multi-channel microscopy data streams on
standard pcs. CoRR, abs/1407.2074, 2014.

[5] C. Crassin. GigaVoxels : un pipeline de rendu basé Voxel pour
l’exploration efficace de scènes larges et détaillées. phdthesis,
Université de Grenoble, July 2011.

[6] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavox-
els: Ray-guided streaming for efficient and detailed voxel
rendering. In Symposium on Interactive 3D graphics and games,
pages 15–22. ACM, 2009.

[7] K. Engel. CERA-TVR: A framework for interactive high-
quality teravoxel volume visualization on standard PCs. In
2011 IEEE Symposium on Large Data Analysis and Visualization
(LDAV), pages 123–124, Oct. 2011.

[8] T. Fogal, A. Schiewe, and J. Kruger. An analysis of scalable
GPU-based ray-guided volume rendering. In 2013 IEEE Sym-
posium on Large-Scale Data Analysis and Visualization (LDAV),
pages 43–51, Oct. 2013.

[9] E. Gobbetti, F. Marton, and J. A. I. Guitián. A single-pass GPU
ray casting framework for interactive out-of-core rendering of
massive volumetric datasets. The Visual Computer, 24(7-9):797–
806, June 2008.

[10] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. In-
teractive volume exploration of petascale microscopy data
streams using a visualization-driven virtual memory ap-
proach. IEEE Transactions on Visualization and Computer Graph-
ics, 18(12):2285–2294, 2012.

[11] J. Kruger and R. Westermann. Acceleration Techniques for
GPU-based Volume Rendering. In Proceedings of the 14th IEEE
Visualization 2003 (VIS’03), VIS ’03, pages 38–, Washington,
DC, USA, 2003. IEEE Computer Society.

[12] C. Silva, Y.-j. Chiang, W. Corrêa, J. El-sana, and P. Lindstrom.
Out-of-core algorithms for scientific visualization and com-
puter graphics. In In Visualization’02 Course Notes, 2002.

[13] J. S. Vitter. Algorithms and data structures for external
memory. Found. Trends Theor. Comput. Sci., 2(4):305–474, Jan.
2008.

https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html

	Introduction
	Related Works
	System overview
	Data representation
	Out-of-core data management
	Virtualization
	Implementation
	Data fetch
	Hierarchy updates

	Results
	Use case
	Performance & Memory Analysis
	Discussion

	Conclusion & Perspectives
	References

